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ABSTRACT

The effect of aniso	 L pic (CM) elastic scattering upon

neutron moderation has been investigated. Relations between

the Legendre moments of the angular scattering data (CM) and

the moderating parameters of the Greuling-Goertzel and improved

Greuling-Goertzel theories are given, and it is shown theoreti-

cally and numerically that only the first few Legendre moments

contribute significantly to the moderating parameters of the

Po (lab) theory. Anisotropic scattering is shown, in general,

to dramatically reduce the moderating effectiveness of a mate-

rial, and to produce oscillations (in energy) in the neutron

flux. Numerical examples for isotopes and mixtures representa-

tive of postulated fast-breeder reactors are given to quanti-

tatively illustrate the effect of anisotropic scattering.
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INTRODUCTION

The energy lost by a neutron in an elastic collision with an atomic

nucleus is correlated with the angle through which the neutron scatters

by the laws of classical mechanics. Any angular bias in the neutron

scattering properties of a particular isotope is thus reflected in the

parameters which Characterize the moderation of neutrons by that isotope.

If, for a given incident neutron energy, the scattering is predominantly

forward in the center-of-mass system, then the isotope in question is a

less effective moderator than it would be if the scattering distribution

was isotropic in the center-of-mass system, and conversely for predomi-

nantly backward scattering.

The approximate slowing-down theory used in this paper has evolved

from the original theory presented by Greuling, Clark, and Goertzel(1)

for isotropic scattering. Hurwitz and Zweifel (1 '2) introduced a forma-

lism for treating anisotropic scattering. Amster (L2) employed this forma-

lism in extending the original theory to accommodate anisotropic scatter-

ing and in determining the sensitivity of the approximation to various

order Legendre components of the angular scattering data. Subsequently,

Greuling and Goertzel () extended their original work to accommodate

anisotropic scattering. Mbre recently, Stacey
(61)

 developed a version

of the theory which improved the treatment of wide and intermediate scat-

tering resonances in mixtures. In both the basic G-G theory, given by

Amster,
(4)

 and generalized herein to explicitly define composite moderat-

ing parameters, and in the improved G-G theory given by Stacey 2) the

contribution of anisotropic scattering to the moderating parameters can

be represented explicitly. The theory is reviewed in an appendix.
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'I'HEORY

The 2-th order Legendre component of the elastic slowing-down density

is defined

ji
u°+ .

B
q (u)	 du'	 du"' E (u' u")0 (u')Si

i i u-s.

where (t) k is the 2,-th order Legendre component of the angular neutron

flux and E si is the k-th order Legendre component of the scattering

transference function of isotope i in the L-system

'-l-3B
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with S. E (Mi - 1)2/IM. + 1) 2 , f3 i. a -2n a i , and M. being the atomic mass

of isotope i. The quantities cr iti are the Legendre components of the scat-

tering cross section in the center-of-mass (CM) system (only values for

2 < L are assumed to be available), 	 and p
c 
are cosines of the scatter-_

ing angle in the L and CM systems, respectively, E . is the macroscopic

scattering cross section, and P
2
 is the k-th Legendre polynomial. The

independent variable u is the neutron lethargy.

An approximate slowing-down theory is obtained by assuming a slowly

varying collision density over the scattering interval (1) (see appendix)

dFk(u)
F (u') a	 u')Ok(u")	 F (u) + (u - u) 	  , u > u-	 u - si ( 3)=

du





in Eq. (1) and in the equation which results from differentiating Eq. (1)

with respect to u
(5) (E is the total cross section)

az (u) dqz(u)	

(u)E(u)0(u) - q(u)
e (u)	 du

where

(u)c
z
(u)

(u)	 (u) + 
a
9. 

e(u)

and the basic moderating parameters are defined as sums of isotopic

moderating parameters which are given by

a(u)Es i (u') ju-+Bi 2Z' + 1 i 
(u) =	 du' 	 	 du" P ( 11 )

E(u")	
R. I L ) 2O	 2	 c19(u')u-B.

p	 (11 ) 2e 

C)
1 - a.

1

+ 1 al 
'
Es.(u')

'
1. (u) =	 du	 (u' - u)	 du—	

29.
Pru)

E(u)	 L) t". ()	 2	 09(u')

p (4 ) 2e 

z' Cj 1 - a.
1
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s	 	
a. Cu')

e(u) E	 du' Ei(11-)	 (u'	 u) Pz(PL)	 /	
+ 1 1 

E(u')	 2.0	 2	 c,9(u)
u-6i

When it is permissible to replace the cross section ratios under the

integrals in Eqs. (6) through (9) with effective values, the isotopic

moderating parameters may be written in terms of the lethargy moments of

the CM-to-L transfer functions(-2-'2)

L	 oir
& z (u) = -	 i	 TLC,i

	t'=0	 E 091
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E a?
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2
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s i ai	
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	 (13)
z a91
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 Yu) l E (u)0 (u) - q2 (u) ,

_

(15)
du yu) i	

2,

a9 (U) dqz(u)
	  =	 (u)

(u)	 du

-

where the basic moderating parameters are defined as sums of isotopic

moderating parameters which are given by
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A rigorous definition of( ) u may be obtained by equating terms corres-

ponding to the same value of 2' between Eqs. (6) and (10), (7) and (11),

(8) and (12), and (9) and (13). However, a simple average may suffice

for heavy mass materials. The primary purpose of writing the moderating

parameters in this form is to indicate the functional similarity to the

Greuling-Goertzel parameters which will be subsequently derived [Eqs. (6)

and (7)] and discussed.

The appropriate form of the Greuling-Goertzel approximation with

anisotropic scattering can be obtained by assuming (see appendix)

t'

	

(u')0 (U')	 Z(U)0 (U) + (U-	
d

- U) — E (u). 2 (u) , u > u > u - B i	(14)

	

s.	 s.

	

1	 1	 du

I 

1

2.
a.

	

E
t 	 L. . z

s.
= _

	

S.	 0

	

1	 a.	 1
1

instead of Eq. (3), in the expressions for q t [Eq. (1)] and dq x/du. The

equation analogous to Eq. (4) which results is
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Es i (u)	 L	 G. (U)
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'
E (u) C=0	 09(u)
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El(u) = (16)
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Es i (u)	 L	 09:-(u)
2 T2	 . 	

E s (u) £'=0 
Lk'

' o9 (u)

E
s 

E	 E	 .
.	 s.

Equations (4) or (15) may be combined with the P N or BN equations to

	

eliminate the moments of the neutron flux. 	 the assumption that

dqt/du = 0, 11 1, the result for the PN equations is

dq0(B,u)
	

E
ne

(B,u)q 0 (B,u) + E(u)So(u)	
(18)

du
	

M(B,u)

q 0 (B,u) + yo(u)S0(u)
• 0 (B,u) = 	 	 (19)

M(B,u)

where

E
ne

(B,u) = E(u) - E s (u)
	

3H
1,N (B 'u)

	 ( 2 0)

with H1 
,N 

given by the continued fraction expansion

al(u)

with

(17)





a
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H
1,N	
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(21)
b + a

t+1

b
1+1 + a1+2
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	b 	 +
1+2 

terminating with b N_J. , where

b
R.

1+1

	

E E(u) - E s (u) ,	 0 < i < N - 1

1 +	 1	 1 + 1 	 n2a	 5	 1 > 1 > N - 11
21 + 1	 2(1 + 1) + 1

and with n E iB where B is the buckling. The quantity H 1,N is an extended

transport cross section which accounts in an approximate way for transport

effects through order N. When N = 1, H 1,1 is the conventional transport

cross section. For the approximate theory of Eq. (4)

-
M(B,u) E	 0(u)E(u) + yo(u)E ne (B,u) ,	 (23a)

Yo(u) E ao(u)/e 0 (u) ,	 (24a)

E(u) E i o (u)E(u) .
	 (25a)

For the approximate theory of Eq. (15)

(22)

M(B,U) CO(11)[1_
du

E s (u) + yo(u)Ene (B,u) ,	 (23h)





yo(u) a - a0(u)/E0(u)

C(11) S E 0 (U)

(24b)

E s (u) .	 (25b)1 + d 
l'o(u)

du ,o(u)
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Heavy mass expansions have been developed 	 for the quantities

2
To i and Toz which enter into the definitions of E 0 and ao in the Greuling-

Goertzel theory,

(p!)2(1 - ai)P
Tozi = ( -1) 9.+1 (29. + 1)	 (26),

p=L+69.0 p(p - z)!(p + 2. + 1)!

iP
T
2

= (-1) (2i 4' 1)	
(p!)2(1 - a)	 p-1

/	 .	 ( 27)OR,1
p=R+6 9.1+26 9.0 p(p - L)!(p + L + 1)! j=l j

The salient features of Eqs. (26) and (27) are that the leading term in

Toz,i is of order (1 - ai) for R. < 2 and of order (1 - ad t fo r > 2,

and the leading term in T(2)1,i is of order (1 - ai ) 2 for L. < 3 and of order

(1 - ai ) for 9. > 3. Making use of Eqs. (26) and (27), Eqs. (16) and (17)

may be written

Esi

E0 7' —
Es

al
Al -1(1 - a ) + • • • + A	 • • • ,	 - a ) L + • •	 (28)•1 ao

.fal

00 ' a

a

0 	
•, 





(29)

2-1-10E

11

aa
y
o 

E —	 =
1

E0

a. 	 a?	 al	 it.
a.

B2 -1- , -- 	 - a.) + • • • + BI --i--- , • • • , --I-

{
,0	 ,0 l

1	 i	
1)	

4	 o091	 a i,

where the A
i 

and B i 
are functions of the indicated arguments.

Some inferences about the effect of anisotropic scattering upon the

moderating parameters can be drawn from Eqs. (28) and (29). To evaluate

E lp or 16,j to accuracy of order [1 - a ir, it is only necessary to retain

terms through order 2. or R. + 1, respectively, in the Legendre expansion

of the scattering transference function in the CM system. For heavy ele-

ments (e.g. uranium) (1 - ai ) A, 0.01 and for light-to-intermediate ele-

ments (1 - ai) A, 0.1. Thus, the first few terms in the Legendre decom-

position of the elastic scattering transference function should suffice

for the numerical evaluation of the moderating parameters of the Greuling-

Goertzeltheory.Becausel-a.is proportional to 1/M., to first order,

the argument given in the appendix for the Greuling-Goertzel approxima-

tion being accurate through second order in 1/Mi suggests that no added

accuracy can be obtained by retaining terms with L > 2 in the evaluation

of the moderating parameters.

Examination of Eqs. (10) through (13) indicates that the moderating

parameters of the improved theory have approximately the same functional

dependence upon the atomic mass and the Legendre scattering moments as do

the corresponding parameters of the Greuling-Goertzel theory. This obser-

vation is augmented by the fact that the improved theory reduces identi-

cAlly to the Greuling-Goertzel theory for constant cross sections and

constant angular distributions. Consequently, the first few Legendre
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moments of the scattering distribution should suffice in the numeriral

evaluation of the moderating parameters of the improved theory, also,

and the argument that no additional accuracy can be obtained by retain-

ing terms with 2. > 2 is approximately applicable.

The need to retain only the first few Legendre moments of the

scattering distribution in evaluating moderating parameters represents

a distinct computational advantage for the Greuling-Goertzel type of

approximation relative to the direct use of group transfer cross sections

in ultrafine multigroup approximations where the group width is narrower

than the maximum lethargy gain per collision for most or all of the iso-

topes in the mixture. For such problems it is frequently necessary to

retain 10-20 Legendre moments to accurately evaluate the group transfer

cross sections, which actually represent the probabilities for scattering

to within a relatively small angular interval, and consequently require

higher-order moments of the angular scattering distribution for an ade-

quate representation. In the Po Greuling-Goertzel type approximation the

moderating parameters represent low-order moments of the slowing-down

kernel which are determined primarily by the first few Legendre moments

of the scattering distribution. For group widths greater than the maximum

lethargy gain percollision, the first few Legendre moments of the angular

scattering data should suffice to evaluate the group transfer cross sec-

tions, Also.

NUMERICAL RESULTS

Several computations have been performed in order to obtain a quan-

titative appreciation of the effect of anisotropic elastic scattering
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upon neulron moderation. Angular scattering distribution data were taken

from ENDF/B. Examples relevant to fast-breeder reactors were chosen. The

buckling was zero in these examples.

Isotopic Nbderating Parameters 

The isotopic moderating parameters

t,
L	 a (u)- i f ,	

—	
r	 1	 1 

Eoll1)	 = 	 L T °Ito. 	,
st'=0	 a':(u)

1

and

L
Z nt.,1a1-(u)/a1(u)]

_ c=0
y o (u) :	 ,

L
1 T 1 	 1a!'-(u)/a9(u)]

oc
.

o. 1	 1
it-=0

which are related to the parameters of Eqs. (16) and (17), were evaluated

for several isotopes.

The quantities Z ip" and -,jd are plotted for 160, 23Na, and 239PU in

Figs. 1-6 for three different orders of anisotropy, L = 0, 1, and 2. The

functional relationship indicated by Eqs. (28) and (29) is apparent fram

these results, in that only 0 1 /a 0 has a large effect on	 while a 1 /0 0 and

a 2 /0 0 have a large effect on	 The values of for L > 2 differed insig-

nificantly fram the values for L = 2. It is interesting that ; < 0 for

239PU when the series in Eq. (31) are terminated with L = 1. This was also

noted for 56 Fe and other heavier mass isotopes. In general, it can

be shown, to first order in a heavy mass expansion, that the condition

for y < 0 is

a l	 02
3 i	 1 i

>1 +
29	 29

!-2-1B
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(31)
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When the Legendre expansion is terminated at L = 1, this condition be-

comes cl!/o9 > 2/3. Thus, while it seems that the Legendre expansion can

be terminated at L = 2 without significantly affecting the evaluation of

the moderating parameters, termination at L < I can obviously introduce

large errors.

The quantities E and y for 56Fe and I2C are shown in Figs. 7 and 8

for L = 5. The energy intervals in whichE
anis

 , E. correspond to
iso

intervals in which the scattering is predominantly backwards in the CM

system, and conversely E 
anis < E iso where the scattering is predominantly

forward. The variation in energy of the angular scattering distribution

produces a resonance-like structure in the moderating parameters. Devi-

ations of and ; fLO their isotropic values are more significant,

naturally, for the higher energies (above 1,100 keV) where the anisotropic

components of the scattering distribution are appreciable. At lower ener-

gies i and y approach their isotropic values. For the isotopes examined

(12c , 160, 23Na, sqe, 2380, and 239PU) , the sensitivity of the moderating

parameters to the retention of additional Legendre moments of the angular

scattering data was consistent with the predictions of Eqs. (28) and (29);

i.e. addition of the C-th moment influenced the result by no more than

order (1 - a) L and (1 - a) 2.-1 for y.

Moderating Parameters for a Pseudo-Mixture 

In order to clearly illustrate the effect of the scattering aniso-

tropy upon neu Lwn moderation a mixture of fictitious isotopes with con-

stant scattering cross sections and zero non-elastic cross sections was

considered (mixture 1 in Table I, with o
ne 

= 0 and 0 18 = 4.0). In such a

mixture, neutrons slowing down from a mono-energetic source have a constant

-2-2B
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elastic slowing-down density, as may be inferred from Eq. (18) and from

physical considerations. If the elastic scattering were isotropic the

moderating parameters, and hence the flux given by Eq. (19), would be

constant in lethargy.

The parameters	 of the Greuling-Goertzel theory [sum over isotopes

of the	 of Eq. (16)] and Z o of the improved theory [Eq. (5)] were

computed for the pseudo-mixture. To evaluate 4, the isotopic parameters

of Eqs. (6) through (9) were evaluated numerically with the recursion

relations given in Ref. 7. a For 239Pu, Eqs. (10) through (13) with the

heavy mass expansions of Eqs. (26) and (27), and with an arithmetic

average of endpoint values used to define effective cross section ratios,

yielded practically identical results; however, such a simple average was

not sufficient for the lighter mass isotopes. The moderating parameter

E 0 of the Greuling-Goertzel theory reflects the lethargy dependence of

the angular scattering distribution directly, whereas 	 of the improved

theory involves integrals over the scattering lethargy interval of the

angular scattering distribution. Consequently, Z o is a somewhat smoother

function of lethargy than is E. The flux defined by Eqs. (19) and (23),

which is inversely proportional to	 or k o for this rAse, b is plotted for

the two calculations in Fig. 9. The variation of the flux is due entirely

to the variation in lethargy of the angular scattering distribution, and the

effect of the latter in this regard is similar to that of wide scattering

resonances.

Elastic Mbderation in Fast-Reactor Mixtures 

-2-3B

The elastic slowing-down density was computed in mixtures typical of

those postulated for fast-breeder reactor cores and blankets. Compositions
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and "background' cross sections are given in Table I, and Table II con-

tains the parameters which were used to represent the wide scattering

resonances of oxygen and iron.

To isolate the anisotropic effects, the attenuation of the elastic

slowing-down density due to non-elastic events was computed without in-

cluding the buildup due to fission, inelastic scattering, and n - 2n

events. Typical results c are depicted in Figs. 10-12. The notations IGG

and GG refer to the improved Greuling-Goertzel [Eqs. (23a), (24a), and (25a)]

and the standard Greuling-Goertzel EEqs. (23b), (24b), and (25b)] prescrip-

tions, respectively.

Inclusion of the anisotropic scattering effects in the evaluation of

the moderating parameters, which reduces the parameter M of Eq. (23) rela-

tive to its isotropic value, in general, dramatically increases the attenu-

ation of the elastic slowing-down density. This effect of anisotropic

scattering is more pronounced at higher energies, where the anisotropy in

the angular scattering data is greater, as may be seen by comparing

Figs. 10 and 11..

The IGG parameters result in somewhat more attenuation than do the

GG parameters. This is due, at least in part, to the failure of the GG

parameters to predict sufficient flux peaking just below (in energy)

strong scattering resonances, as discussed previously.
(6)

Strong scattering resonances reduce the attenuation rate by increas-

ing the ratio of elastic-to-nonelastic events. The "flattening-out" of

the elastic slowing-down density in the vicinity of the 1.0-MeV 160 reso-

nance is evident in Figs. 10 and 12, and the effect of the 27.9 keV 66Fe

resonance is apparent in Fig. 11.

2-4B
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CONCLUSIONS

The effects of elastic scattering anisotropy (in the CM) can be in-

corporated directly into the moderating parameters of the Greuling-

Goertzel type theory. Only the first few Legendre moments of the angular

scattering data need be retained to evaluate the moderating parameters for

the Po (lab) slowing-down thoery, consistent with predictions based only

upon atomic mass. The anisotropic moderating parameters are generally

smaller than the same parameters evaluated for isotropic scattering

only, implying less effective moderating ability for the former than the

latter, which reflects the predominantly forward bias in the angular

scattering data. Elastic slowing-down densities computed with the

anisotropic moderating parameters are attenuated much more rapidly

than when the moderating parameters are computed with only isotropic

scattering. The rapid variation with energy of the angular scattering

distribution results in a resonance-like structure in the moderating

parameters which produces variations in the flux similar to those pro-

duced by wide scattering resonances. Significant differences are found

in the moderating parameters, and consequently the elastic slowing-down

density and flux, computed by the Greuling-Goertzel and by the improved

Greuling-Goertzel prescriptions.
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APPENDIX

Review of Greuling-Gbertzel Type Theory

Amster (4)
 and Fenziger and Zweifel (2) presented generalized deriva-

tions of the Greuling-Goertzel theory including anisotropic scattering.

The derivation presented here is slightly different, being an extension

of Williams' qD derivation to the case of anisotropic scattering. The

notation of Amster, (4) generalized to denote isotopic components of a

mixture, will be used.

If Eq. (2) is substituted into Eq. (1) and a Taylor's series expan-

sion is made in the integrand

E L (u)
•1

,	 ,tu', 7 - u)n dn E(u)o	 (u)]s.1
(A.1)L

n=0
E	 ku-) 0

n! n
du

where

0.

	

EL	 1
E E

	

S.	 S.	 0

	

1	 1G.
1

Eq. (1) may be written

(u)	 _	 I dn
i n=0 dun 

1	 e"')
	 (A.2)

where
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03

Gn 
1
.(u) E	 /( u)T2. 2 	s.	 ZZ',1Z. =0	 1

22' + 1 lu	
du

2n!
1

du" P
Z ( C

2.1 (u' - u"))Z(u)
Z'=0 si

	

x p [ p (u - u")](u' - u) n 	 	 (A.3)C
1 - ai

Differentiating Eq. (A.2)

dq (u)	 dn+1
n+1

-1 ----- (G .(u)(1) (u))n

	

i n=0 du
+1	 Z,1	 zdu

and combining Eqs. (A.2) and (A.4) results in

dql (u)
q(u)

1

GI	 .(u)
Z

O	 (u)
to. 

I+ A t (u)
du

dA
z (u))

du

[dnGn+1 (u)0 (u)
dnGn .(u)O (u)1z,i	 Z	 Z +	 + A(u)

n=2	 dun	 dun

where A
Z
 has been chosen to eliminate first derivative terms involving (1)

1 G2
i 

( u)

A(u) :
z
	 1	

G I
i 

( u)
R,

(A.4)

(A.6)

, (A.5
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The conventional Greuling-GOertzel theory [Eqs. (15) through (17)]

is obtained by neglecting the terms in the sum n > 2 and identifying the

parameters defined by Eqs. (16) and (17)

.1 ( 11 )	 E -G 1	 (U)/E (u) ,
s

at (u) E -G2 .(u)/E (u) .
S

(1The original Greuling-Goertzel theory -' 5)
-- utilized separate equa-

tions of the form of Eqs. (15) [or Eqs. (A.5)] for each isotope (with an

isotopic E, a, q, and E s ) in a mixture. Ferziger and Zweife1 (2) suggested

the use of composite moderating parameters and a total elastic slowing-

down density, and Williams (112) explicitly defined composite moderating

parameters for the race of isotropic scattering. The Above derivation

extends Williams' (12? definitions to the case of anisotropic scattering,

and reduces to Amster's (I-1) results for the case of a single isotope.

(14)
Amster — mode estimates for the accuracy of the Greuling-Goertzel

approximation and the sensitivity to various Legendre moments of the

angular scattering data based on the THEOREM: As y (y = inverse atomic

mass) approaches zero, TIL. approaches zero at least as fast as the faster

of yu and y	 . Generalizing his analysis to a mixture, it is estimated

that A, given by

T2 	 .E i ( U)9.1	 s.
i C=0

2	 2 T 1	.E(u)s.
i i'=0

-2-8B
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is proportional to y i (the inverse mass) for the lightest isotope in the

mixture, unless E k- = 0 for 2," > 9. - 2. It may be further argued that thesi

lowest order terms neglected in Eq. (A.5).

2-9B

d2G3
Z	 z

du2

d2G2
R51.

X
duz

=	 V

• 

T3
Z0

d26k

du2

and

d2EV'ab
sck

- A	

• 

T2
9.R.C,0

dU2

are of order y. Continuing in this vein, it may be argued that in

evaluating the moderating parameters of Eqs. (A.7) and (A.8), using

Eq. (A.3) there is no need to retain terms of order greater than yi, and

thus the sums over Z.° may be terminated at
	

= 2. This line of reason-

mg is based solely upon the dependence of the TnZ" on the atomic mass,
Z

and does not account for the relative order of magnitudes of the E
z' 

and
si

the second derivatives of the E s1 0 .0 and thus should be oonsidered as•

suggestive rather than definitive.

The improved Greuling-Goertzel theory developed by Stacey(2) can

be obtained by substituting Eq. (2) into Eq. (1) and making a Taylor's

series expansion in the integrand

n dnyu)
F (u') E E(u")0 (u	

(u,	 u)
") =

'n=0	 n!	 dun

which yields

dnFo(u)
qi (u) = - 1 2. Hn .(u) 

dun

(A.9)

(A.10)
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where,

Hn
i (u)Z,

_  

u+ai
_ 1	 2Z' + 1 

ju

du 

j'

du" P(u
L
(u' - u"))

n! 2.0	 2 
1

Z'
, u'-u" Es.(u')

	

Pt [LIC (u' - u")) ce	 	 (u' - u) n .
' 

1 - a.	 E(u')1

Note that H i differs from Gn . only by the presence of the cross section

ratio in the integrand of the foruer.

Differentiating Eq. (A.10) results in

dqi(u)	
dn+1F Cu)	

dHn (u)	 d F(u)

	

1 H o .(u)	
t	 t,i 
	  . (A.12)

du	 i n=0 "' I	dunti	 n=0	 du	 dun

Combining Eqs. (A.10) and (A.12) yields

(A.11)

dqp(u)
q(u) +	 (u) "	 = - 1

du

dH? .(u))
H°.Cu) + i (u) " 1	F (u)
Z,i	 Z	 Z

n=

dnFz (u)	 dnFo(u)
.(u) 	  +	 (u)Hn- '(u) 	 "

dun	dun

	

dHn (u)	 dnFz
(u)

+ A
z
(u) 	

du	 dun
(A.13)

where
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1 HI i(u)
'

[

1 1-0z .(u) +i ,3.	

cuil	 (u)I

du

(A.14)

has been Chosen to eliminate first derivatives of F t . The theory of

Eqs. (4) through (9) is obtained by neglecting the sum n > 2 in Eq. (A.13)

and identifying the parameters defined in Eqs. (6) through (9)

Z i ( u) E —1-1 0 (u) ,	 (A.15)
9.

az (u) E	 (A.16)

dH° .(u)
c(u) = 7	 (A.17)

du

dH! .(u)
e (u	 E 1-1 0 .(u) + 	  .	 (A.18)

to.
du

Because of the functional similarity of the improved and conventional

Greuling-Goertzel theories, the estimates made above for the accuracy and

sensitivity to Legendre moments of the scattering data may be taken as

rough estimates for the improved theory, also.
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FOOTNOTES

a
For a sufficiently large L, which was inversely related to the

atomic mass, the recursion relations of Ref. 7 failed because of trunca-

tion error. The value of L for which truncation error became a problem

was much larger than the value of L at which the value of the moderating

parameters became asyuptotic, particularly for the light and intermediate

mass isotopes.	 was found to be relatively insensitive to terns for

> 1, and Yo was found to be relatively insensitive to terms for 2. > 1,

in agreement with the qualitative discussion given in the previous section.

b
Based upon previous experience with wide scattering resonances, (6)

the term

in Eq. (23h) was replaced by unity. This is in accord with common usage

of the Greuling-Goertzel approximation.

cIn addition to absolute attenuation, these curves also give rela-

tive attenuation; i.e. by renormalizing the results at any energy E*,

the attenuation of neutrons slowing down below that energy could be

obtained. Thus, the slopes of the curves over a given energy range are

more relevant than the absolute attenuation.

2-12B
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TABLE I

Composition of Sample Mixtures

Isotope

Concentration
(atm/cc x 102")

0	 (b)
P

0(b)
No. 1
(core)

No.	 2
(blanket)

160 0.0160.016 0.021 2.00 0.3

23Na 0.010 0.007 3.00 0.5

56Fe 0.010 0.015 4.00 1.0

238u 0.010 0.011 10.60 1.8

239pu 0.001 0.00023 10.30 a

a a 235 (b) = 2.5 + 0.45v10/E(MV) .ne





TABLE II

Scattering Resonance Parameters

56Fe 160

E -n E rn
(MeV) g (MeV) (MeV) g (MeV)

0.028 1. 1.60-3	 j 0.442 2. 4.60-2
0.074 1. 4.25-4 1.000 2. 1.00-1
0.084 1. 1.00-3 1.312 2. 4.20-2
0.124 1. 1.50-4 1.910 1. 3.00-2
0.130 1. 5.00-4 2.370 1. 1.20-1
0.141 1. 2.30-3 3.600 2. 8.00-1
0.168 1. 6.90-4 3.770 3. 2.50-2
0.188 1. 3.16-3 4.050 1. 9.50-2
0.220 1. 1.30-3 4.200 2. 8.00-2
0.244 1. 3.00-4 4.320 2. 6.00-2
0.273 1. 3.50-3 4.450 1. 2.80-1
0.315 1. 5.50-3
0.360 1. 9.30-3
0.382 1. 1.00-2
0.406 1. 2.50-3
0.438 1. 1.50-3
0.470 1. 1.50-3
0.500 1. 2.50-3
0.614 1. 2.00-3
0.645 1. 3.00-3
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